Авторизация
Наша группа Вконтакте
Наши партнеры
КРЫМ. СТРОЙИНДУСТРИЯ. ЭНЕРГОСБЕРЕЖЕНИЕ ВЕСНА — 2016
04 ноя 16:01Разное

Океанические ГЭС

Причины, вызывающие движение водных масс в океанах, различны. Здесь и действие сил, связанных с образованием градиентов давлений, и влияние ветров над океанской поверхностью, и приливы. В результате сложной связи этих факторов между собой, вращения Земли, взаимодействия образующихся потоков с неровностями дна и берегами в океане возникают совершенно удивительные по своим свойствам течения, в которых энергия концентрируется настолько, что становится оправданной разработка технических решений этого направления энергетики.

Если принять за эталон течения со средними скоростями порядка 1 м/с, то можно найти достаточно мест для размещения океанических ГЭС (ОГЭС) и в открытом океане, и вблизи берега. Особенно интересен в этом плане Атлантический океан (Гольфстрим, Северное пассатное, Бенгальское, Гвинейское, Бразильское течения). Менее интересен Индийский океан, хотя и обладающий большой суммарной кинетической энергией (Сомалийское и мыса Игольного течения, отроги течения Западных Ветров). В Тихом океане внимание привлекают Куросио и его ответвления. Основные океанические течения указаны на рисунке ниже.

Океанические ГЭС

Надо отметить, что здесь перечислены только некоторые из Великих океанических течений, используя мощь которых принципиально возможно создать достаточно крупные региональные энергетические объекты (суммарная мощность Гольфстрима, например, оценивается в 15 ГВт, а Куросио – в 50 ГВт), но существуют еще и течения, вполне подходящие для решения задач местной энергетики. Укажем, например, постоянно действующие течения в Гибралтарском и Баб-эль-Мандебском проливах, приливные течения в Ла-Манше, между рядом островов Курильской гряды и другие течения, где скорости потоков достигают величин порядка 5–8 м/с и соответственно плотности энергии значительно возрастают по сравнению со средними для крупных океанических течений. Причем в проливах можно использовать для нужд энергетики не только поверхностные, но и глубинные потоки, часто имеющие противоположное поверхностным направление и также обладающие подходящими скоростями.

Практически все течения подвержены каким-то изменениям. Сезонно и из года в год изменяются скорости, направления, физические параметры вод. Устойчивость потоков будет определять стабильность работы будущих ОГЭС, и для энергетики, вероятно, особенно интересны те течения, устойчивость которых превышает 50 %. У всех из перечисленных выше течений этот показатель близок к 75 %. Исключение составляет Сомалийское течение, в летние месяцы изменяющее направление движения на противоположное. Средние сезонные колебания расхода воды в Гольфстриме, например, составляют 15–20 % от наибольшего значения, правда иногда отмечаются и большие колебания (величиной до 50 %). Более стабильно Куросио (10–15 % колебаний расхода), но в отдельные годы и в нем наблюдались изменения скорости и расхода воды в 50–60 %.

Механическая мощность, которую можно извлечь из океанского течения, определяется тем же соотношением, которое используется для оценки этой величины в ветроэнергетике:

Океанические ГЭС

где η – КПД установки ОГЭС; S – площадь омываемой поверхности; р – плотность воды; v – скорость течения.

Строительство крупных ветровых турбин (диаметром до 200 м) практически невозможно из-за ограничений, связанных с прочностью материалов и массовыми характеристиками подобных устройств. Для турбин, работающих в морской среде, массовые ограничения менее существенны из-за действия на элементы конструкций силы Архимеда. Кроме того, повышенная плотность воды позволяет уменьшить столь существенное для воздушных турбин воздействие вибраций, вызывающих усталостное разрушение материалов.

Важное достоинство океанических течений в качестве источников энергии по сравнению с ветровыми потоками – отсутствие резких изменений скорости. При достаточном заглублении в толщу воды турбины ОГЭС надежно защищены от волн и штормов на поверхности. Для эффективного использования течений в энергетике необходимо, чтобы они обладали определенными характеристиками. В частности, требуются достаточно высокие скорости потоков, устойчивость по скорости и направлению, удобная для строительства и обслуживания география дна и побережья. Удаленность от побережья влечет удорожание транспортировки энергии и обслуживания этих станций, как, впрочем, и любых других. Большие глубины требуют увеличения затрат на сооружение и обслуживание якорных систем, малые – создают помехи судоходству. Именно географические факторы не позволяют сейчас говорить о строительстве ОГЭС в открытом океане, где несут свои воды наиболее мощные течения. При средних и малых глубинах, особенно в местах образования приливных течений, важную роль играет топография дна.

В качестве недостатков преобразователей энергии океанических течений следует отметить необходимость создавать и обслуживать гигантские конструкции в морской воде, подверженность этих конструкций обрастанию и коррозии, трудности передачи энергии. Также строительство большого числа крупных океанических ГЭС может существенно повлиять на различные характеристики течений, что может повлечь за собой необратимые последствия, такие как изменение климата, вымирание животных и т. д.

В качестве океанических ГЭС могут быть использованы установки, изобретенные на кафедре «Атомные станции и возобновляемые источники энергии» УрФУ, такие как:

1) преобразователь энергии потока (патент № 101739, опубл. 2010);

2) роторный гидродвигатель (патент № 2464443, опубл. 2012);

3) роторный ветродвигатель с принудительной установкой лопастей (патент № 117523, опубл. 2003);

4) бесплотинная шнековая ГЭС (патент № 94642, опубл. 2010);

5) ротор (патент № 2246634, опубл. 2005).

Немков Д. А., Лунегов Г. В., Попов А. И.
Энерго- и ресурсосбережение. Энергообеспечение. Нетрадиционные и
возобновляемые источники энергии: материалы Всероссийской научно-
практической конференции студентов, аспирантов и молодых ученых
с международным участием (Екатеринбург, 16–19 декабря 2014 г.)
Рейтинг:
0
Добавить комментарий
Ваше Имя:
Ваш E-Mail:
  • bowtiesmilelaughingblushsmileyrelaxedsmirk
    heart_eyeskissing_heartkissing_closed_eyesflushedrelievedsatisfiedgrin
    winkstuck_out_tongue_winking_eyestuck_out_tongue_closed_eyesgrinningkissingstuck_out_tonguesleeping
    worriedfrowninganguishedopen_mouthgrimacingconfusedhushed
    expressionlessunamusedsweat_smilesweatdisappointed_relievedwearypensive
    disappointedconfoundedfearfulcold_sweatperseverecrysob
    joyastonishedscreamtired_faceangryragetriumph
    sleepyyummasksunglassesdizzy_faceimpsmiling_imp
    neutral_faceno_mouthinnocent
Вопрос:
От чего дают энергию солнечные батареи?
Ответ:*
Важно ваше мнение
Какая на Ваш взгляд самая перспективная технология в энергетике?